Cplant*

Rolf Riesen Ron Brightwell

Lee Ann Fisk

Tramm Hudson Jim Otto

Arthur B. Maccabe
{rolf|bright|lafisk|tbhudso|jotto } @cs.sandia.gov and maccabe@cs.unm.edu
http://www.cs.sandia.gov/cplant

May 17, 1999

Abstract

The Computational Plant project at Sandia National
Laboratories is developing a large-scale, massively
parallel computing resource from a cluster of com-
modity computing and networking components. We
are combining the knowledge and research of previ-
ous and ongoing commodity cluster projects with our
expertise in designing, developing, using, and main-
taining large-scale MPP machines.

This paper describes the main parts of the architec-
ture and discusses the most important design choices
and decisions. Scaling to hundreds and thousands of
nodes requires more than simply combining readily-
available software and hardware. We will highlight
some of the more crucial pieces that make Cplant
scalable.

1 Introduction

The Computational Plant (Cplant) project began at
Sandia National Laboratories in Spring of 1997. The
initial idea was to explore commodity-based cluster
technology and build a facility that would provide
compute cycles like a power plant provides electricity.
Distant sites should be able to connect to a Cplant
and receive compute cycles as easily as an appliance
plugged into a wall socket receives electricity.

Since commodity-based technology changes at a
rapid pace, Cplant should be able to incorporate new
hardware quickly. When new generations of hardware
become available, Cplant should grow to incorporate
this new hardware. Older pieces that have been part
of Cplant for three or four years should be pruned
just as easily. The biological metaphor is meant to
indicate that a Cplant can keep up with the tech-
nology curve much easier than the massively parallel

*This work was performed at Sandia National Laboratories
and supported by the United States Department of Energy
under Contract DE-AC04-94AL8500.

processors (MPP) of the past.

These are lofty goals. In order to be successful
and deliver something usable early on, we decided
on the following approach. Cplant would borrow
some concepts of the DOE ASCI Red Tflops ma-
chine [5] and initially have the feel of a large MPP.
Our group designed the compute node operating sys-
tem for Tflops and we wanted to bring its Puma Por-
tals [6] to Cplant. At the same time, we wanted to
add the capability to grow. To achieve this with our
small group, we have chosen, for now, to keep the
system as homogeneous as possible. This means new
growth for Cplant consists of the same CPU architec-
ture and the same network technology as the original
prototype we built in 1997. Work has begun to al-
low Cplant to become more heterogenous, but much
remains to be done.

The rest of this paper shows what we have ac-
complished and gives a little insight into how Cplant
works and how it is built. Then, we will discuss some
of the design decisions that we have made and explain
why we made them. Finally, we outline some of the
future work we have planned.

2 Cplant Architecture

Logically, a Cplant consists of several partitions [2].
A partition is a collection of nodes that together per-
form one of the functions of the total computational
resource. These partitions are defined in configura-
tion files, and the boundaries can be moved by recon-
figuring or rebooting the nodes in the affected parti-
tions. When users logon to a Cplant, a load-balancing
name server puts them onto one of the nodes in the
service partition, where users interact with Cplant
and launch parallel applications. The size of the ser-
vice partition (i.e., the number of nodes assigned to
the service partition) is determined by the expected
number of simultaneous users. For a few users run-
ning large parallel applications, one or a few service

nodes will do. If there are many users running many
small jobs, then the service partition needs to be big-
ger.

Most of the nodes in a Cplant are in the compute
partition, where parallel application processes run.
Users cannot logon to these nodes, and we keep the
number of services running on compute nodes to a
minimum. Ideally, only application processes con-
sume CPU cycles on a compute node. We are even
thinking of trimming Linux down to a very simple
kernel that cannot do much more than message pass-
ing and run a compute intensive process. Our com-
pute nodes have no local disks attached to them. For
that matter, none of the nodes in Cplant have key-
boards, video cards, CD-ROMs, or floppy drives. The
exception is the top level system support station (dis-
cussed below) that controls the whole system.

A utility called yod is used in the service partition
to launch a parallel application in the compute parti-
tion. This launch utility and a set of daemons allocate
compute nodes and place one process per compute
node. For the duration of the run, these compute
nodes remain assigned to this parallel application.
Nodes are thus space-shared. Time-sharing compute
nodes would require demand-paged virtual memory.
The overhead associated with context switches and
page swapping would be disastrous to our applica-
tions which need a lot of physical memory to run at
full speed. When demand increases, and not enough
compute nodes are available, then the system is prob-
ably too small for the number of applications and
simultaneously required nodes. At that time the
Cplant can be grown to a larger size.

There are other partitions. I/O partitions consist
of nodes that have disks attached. We are working
on a parallel file system that converts I/O from com-
pute nodes into messages and accesses the data stored
on the disks attached to the nodes in the I/O parti-
tion. The nodes of any partition can be anywhere in
the topology; partitioning is just a logical arrange-
ment enforced by our software. The node allocator
tries to select compute nodes that are physically close
together. This strategy reduces message passing la-
tency for applications and also reduces congestion in
the network. One strategy for I/O nodes is to dis-
tribute them evenly across the topology. If compute
nodes select I/O nodes nearby, then I/O traffic is
evenly distributed across the network. However, it
is not always possible to chose a nearby I/0O node.
For example, a data transpose requires data to be
read to a different compute node than the one that
wrote it. In our configuration, the I/O nodes are not
the same PCs as the compute nodes. They have dif-
ferent dimensions and we installed them in their own

racks. They share one Myrinet switch and are there-
fore located in one spot of the network. The switch
has enough bisection bandwidth and enough external
connections into the network that this setup should
not impact performance.

Other partitions can be created. For example,
nodes with long-distance network interfaces, such as
ATM, can be collected in a network partition. Nodes
with special graphics hardware could be combined in
a graphics partition.

Another key aspect of the Cplant architecture is
maintainability. Our current 400-node system uses
Myrinet to connect all the service, compute, and I/O
nodes. We have built a support infrastructure that
is hidden from the users. It is a crucial piece of a
large-scale system. Yet, just like the internals of a
personal computer, users need not be aware of all the
functions involved in making the system usable and
reliable.

We call this support infrastructure the system sup-
port partition, even though it has nothing in com-
mon with the configurable partitions mentioned ear-
lier. The system support partition consists of sep-
arate, Ethernet based, networks and a set of PCs.
These PCs, called system support stations (sss), are
not connected to the Myrinet, have a disk with the
system software on it, and serve as the controllers
for a scalable unit (SU). An SU in our current con-
figuration consists of 16 nodes (compute, service, or
I/0) collected in two racks together with power con-
trollers, Myrinet switches, terminal servers, and an
Ethernet hub. The system support station controls
the power to all the devices that are part of its SU,
serves kernels and firmware to the devices in its SU,
allows telnet to the console ports (through the termi-
nal server), and provides NFS mounts for the system
software.

All the system support stations at level 0 are con-
nected through yet another Ethernet, to a level 1
system support station. This sssl is the Cplant en-
try point for system administrators and developers.
From here all devices in the system can be power-
cycled, booted, and monitored. This is also the point
where the system software gets installed. Scripts us-
ing rdist distribute the software to the system support
stations at level 0. This hierarchy of support stations
is very scalable and adaptable. Each individual Eth-
ernet has a minimal load on it, no matter how big
the system grows. Using this support system we can
power cycle and boot a 400-node Cplant in under two
minutes.

3 System Software

The system software can be grouped into several ma-
jor parts. Portals and the associated drivers are our
low-level message passing mechanism. All the traffic
going over Myrinet uses Portals. Libraries, such as
MPT and I/O, use Portals to transfer data and con-
trol messages.

The application loader yod works in conjunction
with a node allocator and a daemon process on each
compute node to load and start application processes.
Special startup code, executed before main (), sets up
the environment each process sees and establishes a
connection to yod. The loader remains running in the
service partition as long as the parallel application is
active. After startup, yod serves as a proxy. Signals
issued to yod are propagated to all processes in the
application. Standard I/O from any process in the
application gets funneled through yod. A printf ()
to standard out will appear on the terminal from
which yod has been started. The environment an
application process sees is the environment yod sees
on the service node. For example, environment vari-
ables such as $USER, are visible from each process.
A home directory mounted on the service node and
accessible by yod, is automatically accessible by all
the processes that yod launched.

Funneling all I/O through yod and a single service
node is not scalable. For this reason we are imple-
menting a parallel file system that will use multiple
data paths to multiple I/O nodes and disks to dis-
tribute the load. Yod and its functionality can be
easily integrated into a batch queuing system such as
PBS.

Another major piece of the system software can be
found in the system support partition. Here we have
configuration files, a hardware database, and scripts.
We can specify what nodes belong to what partition,
which kernels should be booted and what version of
the system software should be used on a given node.
We can boot and power cycle individual nodes, an
SU, or the whole system from the top level system
support station. This sssl is on the Sandia network.
Therefore, we can control operation of Cplant from
our offices and even from home. We have scripts that
automatically discover hardware when the system is
powered on. With the information gained during that
process we build a database of available hardware.
A set of rules is used by perl scripts to automati-
cally generate configuration files that determine such
things as the host names of nodes, what kernels they
should boot, what services need to be started, and
what partition they should belong to.

4 Design Decisions

In this section we discuss some of our design deci-
sions. The overriding design goal for Cplant is the
ability to scale to at least 8192 nodes. Developing
and choosing software and hardware for that scale
ensures that smaller machines will run without prob-
lems. This requirement also excludes right from the
start many options that work well on 32 or even 64
nodes.

Why Linux? We had several options when we
started looking for an operating system for Cplant.
We considered porting Puma, the compute node OS
from the Tflops machine. We thought about using
the vendor supplied DEC Unix, and we looked at sev-
eral of the free Unix clones. We needed to come up
fast and we also needed a full-fledged Unix in the ser-
vice partition. This eliminated porting Puma. Given
source access, DEC Unix was an option. We chose
Linux because it is open source and has been ported
to many different architectures that might some day
become a part of Cplant. Becoming independent of
a single vendor is one of Cplant’s goals. Therefore,
we need an OS that runs on many platforms and is
vendor neutral.

Another project at Sandia already had Linux run-
ning on individual nodes of the Tflops machine, and
a port of Portals to Linux had begun.

Among the free Unix clones we chose Linux be-
cause we already had some familiarity using it on
our desktop machine and its kernel modules provided
for a quick and easy way to develop and test ker-
nel enhancements. Linux is now the dominant free
Unix. Many vendors support it on their platforms
and a large users and developers community ensures
longevity.

Why Portals? Portals are openings into user
address space [6] that can be written to or read from.
The process that opens a Portal has several options to
select access to that Portal, and how incoming mes-
sages should be deposited. A key feature is the abil-
ity to select incoming messages based on their source,
length, and a 64-bit tag. This selection takes place
before the message is deposited in user space and
helps avoid costly memory-to-memory copies.

We developed Portals on the nCUBE 2, ported
them to the Intel Paragon, and they are in daily use
on the Tflops machine. We have libraries, such as
MPI, that make use of Portals, and they have proven
to be scalable.

We looked at other options, such as AM II, GAM,
BIP, FM, GM, PM, VIA, and ST. We created a com-
munication layer requirements document for Cplant.
This layer has to support MPI for applications, but

also I/0, process loading and control, and debugging
of remote processes. Cplant is designed to use a wide
variety of network technologies, and the communica-
tion layer has to support all of them. All other choices
for this layer were eliminated because they were spe-
cific to a given network technology, not backed by a
major vendor, not scalable, or too early in their de-
velopment to be usable in a production environment.

Why Myrinet? We wanted the fastest, scal-
able network available. This ideal was constrained by
cost. Myrinet is a mature gigabit network technology.
Its switches can be connected in many different way
to build any desired topology. Myrinet has its roots
in the networks of large MPPs and is scalable. Last
but not least, the interface cards are programmable
and allow system programmers to implement various
protocols directly in the interface cards.

Why a custom loader? A simple shell script
that spawns rsh processes is not scalable beyond a
few hundred nodes. We already had a scalable appli-
cation process loader on the Tflops machine. It also
included a node allocator, standard I/O redirection,
signal propagation, and other desirable features.

Why no local disk? We are buying stan-
dard desktop PCs as nodes for our Cplant. However,
we configure them to exclude CD-ROM, floppy drive,
keyboard, mouse, video card, and hard-disk. The
first reason to exclude a local hard-disk is DOE labo-
ratory specific. In order to use a system for classified
and unclassified work, any permanent storage has to
be removed when switching from one mode of oper-
ation to another. With two separate file servers, one
attached to Cplant when the other is not, we have the
option of switching the compute nodes quickly from
classified to unclassified mode.

We do not want to use disks to demand-page mem-
ory. Our high-performance applications would suffer
significantly, if required pages need to be made resi-
dent before a message can be deposited or sent. This
means the only purpose for a local disk is scratch
space or as a component of a parallel file server. Us-
ing local scratch space has the disadvantage that it is
tied to a particular node. After a checkpoint restart,
or as input to a subsequent application, local scratch
space cannot be used because the application may
run on a different set of nodes. Instead of moving the
data to the new nodes, it is more economical to use
a parallel file system that is location independent as
scratch space.

Why not SMP? A second CPU on each node
would add only about 1/3 more compute power using
Linux. Furthermore, Linux is still not a very good
SMP OS. Its stability decreases in SMP mode. There
are other reasons not to chose SMP nodes just yet.

Our libraries, including our modified MPICH, are not
thread-safe. The programming model becomes more
complex and most of our applications are not ready
to take advantage of other local CPUs.

A second CPU could be used as a message co-
processor. This is not as effective as it is on the
Paragon and the Tflops machine, because the net-
work interface is on the PCI bus, not the memory
bus. Since the Myrinet cards already provide a pro-
grammable CPU, using a host CPU as a message co-
processor is not cost effective.

5 Status

The system is running Release 0.2 of our system soft-
ware. Friendly users have been using the system for
several months, and an effort is under way to bring
about ten new applications to Cplant this Summer.
The goal is to run each of these applications on at
least 256 nodes.

The integration of Puma Portals from the small
runtime kernel of the Tflops machine into Linux
proved challenging. The fact that the network in-
terface is behind an I/O bus, instead of directly on
the memory bus, and dealing with a full-fledged OS
kernel caused unwanted overhead in our implementa-
tion, such as memory-to-memory copies.

We have redesigned Portals, simplified them, added
a thin API, and created a reference implementation.
The reference implementation is modular and is di-
vided into the Portals 3.0 proper and a network de-
pendent piece. The reference implementation comes
with a network abstraction layer that sits on top of
TCP/IP. The first implementation over Myrinet re-
places the current Portals module in the Linux kernel.
Much of the overhead is still present, since we reuse
the drivers and Myrinet control program (MCP) on
the network interface card (NIC) from the current
implementation. We have begun to port our system
software and Myrinet library to the Portals 3.0 APL.

While adaptation to the new API is taking place,
we have also begun work on the second implementa-
tion of Portals 3.0. For this implementation we put
the Portals code into the Myrinet NIC. The CPU on
the NIC can then deposit and retrieve data from user
memory without the intervention of the host CPU.
For this OS bypass mechanism to be efficient, we need
physically contiguous memory under Linux. This is
one area where Linux does not fit our needs and we
had to modify the kernel.

The 400-node Cplant is operational and in daily
use. Almost 800 more nodes have been ordered and
will be installed later this Summer. The new system

employs nodes with the DEC Alpha 21264 (EV6),
more memory (256 MB), and faster Myrinet cards (64-
bit LANai 7.x). The nodes will be divided into several
smaller Cplants. Some of them to do classified work,
and some of them to go to the Sandia California site.

A major piece of 400 to 500 nodes will remain and
will be brought up independently at first, but will
then be connected to the original 400 node Cplant,
making it one of the largest clusters in the world.
And it runs Linux!

6 Conclusion and Future Work

Our approach to building a Linux cluster is strongly
influenced by our experience writing system software
for the nCUBE 2, Intel Paragon, and DOE ASCI Red
Tflops machine. We have built a very large cluster,
paying close attention to scalability, dealing with is-
sues that never show up on 128 nodes or less. We
wrote the system software so that the cluster would
feel, and can be managed, like a single large MPP.
We think there is a spectrum of systems ranging
from widely distributed systems to tightly coupled
MPPs [4]. Each serves its purpose. Our users at
Sandia National Laboratories are used to MPPs and
have applications that are well adapted to such an
environment. These applications are tuned to run
on hundreds and thousands of nodes. To serve our
community, we created software that mimics that en-
vironment using standard off-the-shelf components.
In the future we will continue to grow Cplant to
truly large scales and attempt to characterize how
large of a system, useful to MPP applications, can
be built using off-the-shelf components. Cplant will
become more heterogenous and we will have to deal
with the challenges this presents. Another group at
Sandia has begun looking at making Cplant compute
resources available to other facilities in the DOE com-
plex. This group is looking at Globus [1] and Le-
gion [3] to see how these systems could be used to
make Cplant a node in wide-area compute resources.

7 Acknowledgements

The system software team for Cplant includes the au-
thors and Bill Davidson, Michael Levenhagen, Mike
McConkey, John VanDyke and Lee Ward. Many peo-
ple outside of this core group have contributed and
we would like to thank Rob Armstrong, Pang Chen,
Robert Clay, David Evensky, David Greenberg, Mark
Sears, and Dave van Dresser.

References

[1] Ian Foster and Carl Kesselman, editors. The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufman, 1998.

[2] David S. Greenberg, Ron Brightwell, Lee Ann
Fisk, Arthur B. Maccabe, and Rolf Riesen. A
system software architecture for high-end com-
puting. In Proceedings of Supercomputing’97, San
Jose, CA, November 1997.

[3] Andrew Grimshaw, Adam Ferrari, Frederick Kn-
abe, and Marty Humphrey. Wide-area comput-
ing: Resource sharing on a large scale. IEEFE
Computer, 32(5):29-37, May 1999.

[4] Rolf Riesen, Ron Brightwell, and Arthur B. Mac-
cabe. Differences between distributed and parallel
systems. Technical report SAND98-2221, Sandia
National Laboratories, 1998.

[5] Tom Thompson. The world’s fastest computers.
Byte, 21(1):45-64, January 1996.

[6] Stephen R. Wheat, Arthur B. Maccabe, Rolf
Riesen, David W. van Dresser, and T. Mack Stall-
cup. PUMA: An operating system for massively
parallel systems. Scientific Programming, 3:275—
288, 1994.

